

International Journal of Engineering

TECHNICAL NOTE

Journal Homepage: www.ije.ir

Thermodynamic Analysis and Optimization of a Novel Cogeneration System: Combination of a gas Turbine with Supercritical CO₂ and Organic Rankine Cycles

H. Nami*, F. Mohammadkhani, F. Ranjbar

Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran

PAPER INFO

ABSTRACT

Paper history: Received 04 August 2016 Received in revised form 30 September 2016 Accepted 11 November 2016

Keywords: Combined Cycle SCO₂ Organic Rankine Cycle Energy Exergy Optimization

Thermodynamic analysis of a novel combined system which is combination of methane fired gas turbine cogeneration system (CGAM) with a supercritical CO_2 recompression Brayton cycle (SCO₂) and an Organic Rankine Cycle (ORC) is reported. Also, a comprehensive parametric study is performed to investigate the effects on the performance of the proposed system of some important parameters. Finally, a thermodynamic optimization is done to maximize energy and exergy efficiencies. The results showed that, the energy and exergy efficiencies are maximized at particular compressor pressure ratios and the values depend on the operating parameters of the system. Energy and exergy efficiencies are determined to be 85.33% and 54.18%, respectively, for the proposed system under the base condition. Moreover, the parametric study showed that in addition to the operating parameters of the system, ambient temperature has also an important effect on the system performance as energy efficiency increases and exergy efficiency decreases with the ambient temperature increment.

doi: 10.5829/idosi.ije.2016.29.12c.00

ACRONYMS		e _i	Specific thermomechanical flow exergy at state i [kJ/kmol]
AC	Air compressor	e _{ch}	Specific chemical exergy [kJ/kmol]
AP	Air preheater	e_{ph}	Specific physical exergy [kJ/kmol]
CC COND C1	Combustion chamber Condenser Compressor 1	h LHV <i>'n</i>	Specific enthalpy [kJ/kmol] Lower heating value [kJ/kmol] Molar rate [kmol/s]
C2	Compressor 2	P_i	Pressure at state i [bar]
GT1	Gas turbine 1	rp	Pressure ratio [-]
GT2	Gas turbine 2	R	Universal gas constant [kJ/kmol.K]
HRSG	Heat recovery steam generator	s	Specific entropy [kJ/kmol.K]
HTR	High temperature recuperator	T_i	Temperature at state i [K]
HE1	Heat exchanger 1	Ŵ	Produced or consumed power by components [kW]
HE2	Heat exchanger 2	Greek letters	
LTR	Low temperature recuperator	3	Exergy efficiency [%]
ORCT	Organic Rankine cycle turbine	$\eta_{is,C}$	Isentropic efficiency of compressor [%]
ORCP	Organic Rankine cycle pump	$\eta_{is,GT}$	Isentropic efficiency of gas turbine [%]
Nomenclature		$\eta_{is,P}$	Isentropic efficiency of pump [%]
Ė _i	Exergy rate [kW]	η	Energy efficiency [%]

*Corresponding Author's Email: h.nami@tabrizu.ac.ir (H. Nami)

Please cite this article as: H. Nami, F. Mohammadkhani, F. Ranjbar, Thermodynamic Analysis and Optimization of a Novel Cogeneration System: Combination of a gas Turbine with Supercritical CO_2 and Organic Rankine Cycles, International Journal of Engineering (IJE), TRANSACTIONS C: Aspects Vol. 29, No. 12, (December 2016)